Effects of Superacid Depolymerization and Catalytic Hydrogenation on Pyrolysis Reactivity of Illinois #6 Coal

Hideyuki TAKAGI, Takaaki ISODA, Katsuki KUSAKABE and Shigeharu MOROOKA

Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 812-8581, Japan

KEY WORDS: coal, structural change, pyrolysis

INTRODUCTION

Pretreatments under mild conditions do not substantially alter the structure of coal and increase its extractability with organic solvents [1,2]. Up to 80 wt% of Yallourn coal, which had been oxidized at 60° C with aqueous H_2O_2 in the presence of 1-propanol, was solubilized in ethanol [1]. The ethanol soluble fraction was further hydrogenated using a Ru/Al₂O₃ catalyst in a mixed solvent of ethanol and acetic acid at 120° C for 12-72 h at a hydrogen pressure of 10 MPa [2], to give a yellowish white solid (hydrogenated white coal). This catalytic hydrogenation altered the aromatic structure of the coal, in part, and increased its reactivity with respect to pyrolysis. However, the H_2O_2 oxidation was not effective in increasing the extractability of bituminous coals.

Shimizu et al. [3,4] depolymerized a subbituminous coal using a superacid at 150°C. This was a unique process which greatly increased the solubility of coal. In the present study, Illinois #6 coal was depolymerized using the superacid, trifluoromethanesulfonic acid (CF₃SO₃H, hereafter, referred to TFMS), in the presence of solvents at 120°C, and the treated coal was then extracted with tetrahydrofuran (THF). The THF solubilized coal was then hydrogenated over a Ru catalyst at 120°C for 48 h under a hydrogen pressure of 10 MPa. Changes in coal structure and pyrolysis reactivity by the combination of superacid treatment and catalytic hydrogenation were then examined.

EXPERIMENTAL.

Depolymerization via Treatment with Superacid Followed by THF Extraction: Figure 1 shows the procedure for superacid treatment and THF extraction of Illinois #6 coal. 1 g of the coal, which was pulverized to 74-125 μ m in size, 3-5 mL of TFMS, and 13 mL of a solvent were mixed in an autoclave of 25 mL. Toluene, methylcyclopentane or isopentane were used as the solvent, and the supension was stirred at 120°C for 3 h [3]. After the depolymerization, the product was neutralized with an aqueous solution (5 wt%) of Na₂CO₃. The precipitate was washed with water and extracted with THF under ultrasonic irradiation at room temperature. The mixture was then separated into THF-soluble (TS_d) and THF-insoluble (TI) fractions by centrifugation. The TS_d fraction was then subjected to hydrogenation. The raw coal was also

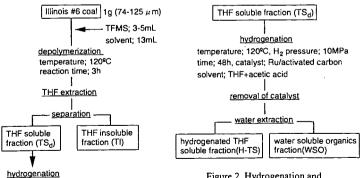


Figure 2. Hydrogenation and fractionation procedure.

extracted with THF, and the THF soluble fraction was subjected to further characterization. The TS fraction of the raw coal is hereafter referred to as the TS, fraction.

Hydrogenation of THF Extract: Figure 2 illustrates the procedure used for the hydrogenation of the TS_d fraction. A ruthenium-supported activated carbon catalyst (metal content = 5 wt%, Wako Chemical) was used for the hydrogenation. 1 g of the TS_d fraction was dissolved in a mixture of 8 mL of acetic acid and 6 mL of THF in a 25 mL autoclave equipped with a magnetic stirrer, and hydrogenated using 1.5 g of the catalyst at 120° C for 48 h under a hydrogen pressure of 10 MPa. After the removal of the catalyst by filtration, the solvent was evaporated. The product was then extracted with water under ultrasonic irradiation, leading to a hydrogenated, THF-soluble (H-TS) fraction and a water-soluble organic (WSO) fraction. Each fraction was dried at 70° C for 6 h under vacuum, and the yields were determined gravimetrically.

Structural Analysis and Flash Pyrolysis of Products: The H/C atomic ratio of the coals was evaluated by elemental analysis, and the molecular weight was determined by GPC analysis described previously [2]. The hydrogen distribution and aromaticity (f_a) were estimated by H-NMR spectroscopy and elemental analysis using the Brown-Lander equation [5]. The thermal reactivity of the coals was evaluated by flash pyrolysis at 764°C under an inert atmosphere using a Curie-point pyrolyzer (CPP, Japan Analytical Industry, JHP-22). Inorganic gases (IOG; CO, CO₂, H₂O and H₂) and hydrocarbon gases (HCG; C₁-C₅) were analyzed using gas chromatographs (GC) equipped with TCD and FID detectors. The tar fraction was analyzed using a CPP connected to a GC interfaced with a mass spectrometer (GC/MS, Shimadzu, QP-5000) [6].

RESULTS

The TS_r and TS_d fractions were recovered as solids after the removal of the solvent, while the H-TS fraction was a viscous black liquid. Figure 3 shows the yields of the TS_r TS_d and TI fractions. The yields are expressed in wt% of the mass of the dry raw coal. The TS yield, which was 14



Figure 3. Yields of TS and TI fractions by depolymerization using TFMS.

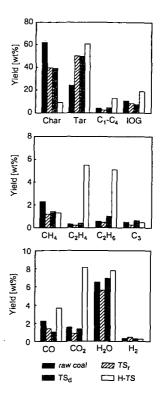


Figure 4. Product distributions of flash pyrolysis.

wt% for the raw coal, was increased by the depolymerization to 89 wt% for the case of methylcyclopentane, and 79 wt% for isopentane. Figure 4 shows the product distributions of the flash pyrolysis for the raw coal, the TS, and TS_d fractions, and the H-TS fraction. The yields are expressed based on the initial mass of each sample used for pyrolysis. The char yield was 62 wt% for the raw coal, 40 and 38 wt% for the TS, and TS_d fractions, respectively, and 5 wt% for the H-TS fraction. The tar yield was increased from 24 wt% for the raw coal to 61 wt% for the H-TS. The total yield of hydrocarbon gases, which were rich in ethylene and ethane, was increased as a result of the hydrogenation. The yields of CO, CO₂ and H₂O were increased, while the yield of H, remained unchanged by the hydrogenation.

Table 1 shows the elemental analysis of the raw coal and the TS_n TS₄ and H-TS fractions, as well as the molecular weight of the TS_n TS₄ and H-TS fractions. The H/C atomic ratio was increased from 0.89 for the raw coal to 1.52 for the H-TS fraction. The molecular weight of the H-TS fraction at the peak of the elution curve was approximately 1000. Table 2 shows the hydrogen distribution, as well as the aromaticity, of the TS_n TS₄ and H-TS fractions, as determined by H-NMR spectroscopy. The depolymerization resulted in an increase in the H₂ and H₂ of the TS₂ fraction. The hydrogenation of the TS₄ fraction resulted in a decrease in the H₃. The H₄ remained unchanged by the hydrogenation.

The tar component, obtained by the pyrolysis of the H-TS fraction at 764 °C, contained approximately 40 components. The unit structures of 6 major components were analyzed by GC/MS, elemental analysis, molecular weight and hydrogen distribution. As shown in Figure 5, these species were composed of 1-3 rings, suggesting a partial hydrogenation of the coal structure. The yield of these species was 14 wt% for (A), 13 wt% for (B), 11 wt% for (C), 7 wt% for (D), 8 wt% for (E) and 4 wt% for (F) with respect to the initial mass of the H-TS.

DISCUSSION

The Illinois #6 coal, which was depolymerized using TFMS in the presence of methylcyclopentane, was solubilized in THF at a yield of 89 wt%. As shown in Table 2, the increase in the H_{β} and H_{γ} after superacid treatment suggests that alkyl groups, derived from the solvent, are introduced into the coal structure [3]. The decreases in H_{ac} Ha and f_{γ} indicate that the aromatic rings in the coal structure are hydrogenated over the Ru catalyst. The increase in H_{β} , which is assigned to methylene and alicyclic hydrogens, is also indicative of the hydrogenation of the aromatic structure of the coal. The H_{γ} , which is assigned to methyl hydrogens of the TS₄, remains unchanged by the hydrogenation, suggesting that side chains are not greatly decomposed during the hydrogenation.

No differences in pyrolysis reactivity were observed between TS, and TS₄. The HCG yield is increased by only 2 wt% by depolymerization. Thus the superacid treatment leads to an increase in the amount of extracts without altering the pyrolysis reactivity of the TS, fraction. The yield of volatile matters is increased by the hydrogenation from 62 wt% for the TS₄ fraction to 95 wt% for the H-TS fraction. Assuming that the decrease in the f_4 is caused by the hydrogenation of aromatic rings, 21 mol% of the aromatic carbons in the coal are converted to alicyclic carbons.

CONCLUSIONS

THF-solubilized coal was depolymerized with TFMS and then hydrogenated over a Ru catalyst in a mixed solvent of THF and acetic acid at 120°C. The pyrolysis reactivity of the THF-

Table 1. Elemental Analysis and Molecular Weight

of the Raw Coal, TS_r, TS_d and H-TS Fractions

Sample C H N (O+S) diff H/C O/C

sample	С	Н	N	(O+S) _{diff}	TI/C	O/C	Mw ^a
		[wt%	- d.a.f	.]	H/C		
raw coal	74.5	5.5	1.5	18.5	0.89	0.19	
TS _r	75.3	5.5	1.4	17.8	0.88	0.18	3000
TS _d	77.2	6.3	0.9	15.6	0.98	0.15	1500~2000
H-TS	68.7	8.7	0.1	22.5	1.52	0.25	1000

a molecular weight

Table 2. Hydrogen Distribution and Aromaticity of TS_r, TS_d and H-TS Fractions

	mol/				
sample	H _{ar}	Hα	Нβ	H,	¹ a
TS,	25.3	29.4	34.0	4.9	0.61
TS _d	19.9	22.5	39.8	11.2	0.60
H-TS	10.1	13.3	53.2	12.0	0.39

$$(A) \quad CH_3 \qquad (B) \qquad (C) \qquad (COOH$$

$$(D) \quad OH \qquad (E) \qquad (F) \qquad (CH) \qquad (COOH)$$

$$C_{C_4} \qquad (COOH) \qquad$$

Figure 5. Unit structures of major compounds formed by pyrolysis of the hydrogenated TS fraction.

solubilized coal was increased by catalytic hydrogenation, which clearly altered the aromatic structure of the coal.

ACKNOWLEDGMENTS

This research was supported by Japan Society for the Promotion of Science (JSPS), Organization of New Energy and Industrial Technology Development Organization (NEDO), and Center for Clean Coal Utilization, Japan (CCUJ). The support by Research for the Future Projects (Coordinator; Prof. M. Iino, Tohoku Univ.) and International Joint Research Program (Coordinator; Prof. M. Nomura, Osaka Univ.) is especially acknowledged.

REFERENCES

- [1] Isoda, T.; Tomita, H.; Kusakabe, K.; Morooka, S.; Hayashi, J.-i. Proc. of Intern. Conference on Coal Science 1997, 2, 581.
- [2] Isoda, T.; Takagi, H.; Kusakabe, K.; Morooka, S. Energy Fuels 1998, 12, 503.
- [3] Shimizu, K.; Karamatsu, H.; Inaba, A.; Suganuma, A.; Saitou, I. Fuel 1995, 74, 853.
- [4] Olah, G. A.; Bruce, M. R.; Edelson, E. H.; Husain, A. Fuel 1984, 63, 1130.
- [5] Brown, J. K.; Lander, W. R. Fuel 1960, 39, 87.
- [6] Hama, H.; Matsubayashi, K.; Murata, S.; Nomura, M. J. Jpn. Inst. Energy 1993, 72, 467.